
Advanced Coding

PC Sessions

Rotondo Massimiliano 199699

Ferro Demetrio 207872

Minetto Alex 211419

Advanced Coding PC Sessions

Contents

PC Session 1: BER Counter 1

Purpose . 1

Problem Statement . 1

Available software . 1

System Description . 2

Results Discussion . 3

BER Meter Class Implementation . 5

PC Session 2: Limits of Coding 7

Purpose . 7

Problem Statement . 7

Available (new) software . 7

System Description . 7

Constrained Signal Set Analysis . 8

Finite Block Length Analysis . 10

PC Session 3: SISO Decoder 15

Purpose . 15

Problem Statement . 15

Available (new) software . 15

System Description . 16

SISO Implementation . 18

Results Discussion . 20

PC Session 4: PCCC Decoder 23

Purpose . 23

Problem Statement . 23

Available (new) software . 23

System Description . 23

PCCC Decoder Implementation . 25

Results Discussion . 25

PC Session 5: LDPC Decoder 31

Purpose . 31

Problem Statement . 31

Available (new) software . 31

System Description . 31

LDPC Implementation . 32

Results Discussion . 35

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex

Advanced Coding PC Sessions

PC Session 1: BER Counter

Purpose

1. Learn how to use Microsoft Visual C++ development environment

2. Understand the structure of a simulation program in C++ for a communication system

a. The blocks of the communication system

b. The signals

c. Input parameters

d. The simulation loop and simulation interval

e. Output of measures on system

3. Learn how to implement a simple class for the simulation of a communication block

a. Public and private members

b. Common methods

4. Implement a class ”BER M” that emulates the block computing the Bit Error Rate by comparing two

binary streams

a. Check its functionality by substituting the implemented class to the class already available in

TOPCOM and verifying that it provides the same results on the system considered in the first

PC session

5. Writing a report

a. Description of the system

b. Description of the purpose of the simulation and measures performed over the system

c. Presentation of the results

d. Comments on the results

Problem Statement

Computation of the bit error probability as a function of the parameter Eb/N0 for systems using QAM

modulations.

Available software (C++ classes)

1. The source of random bits (PN Source)

2. The Modulator, mapping bits to QAM constellation points (Modulator)

3. The AWGN channel, adding Gaussian noise to the constellation points (AWGN Channel)

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 1 of 37

Advanced Coding PC Sessions

4. The demodulator, performing the detection based on the minimum Euclidean distance criterion and

returning the corresponding bits (Demodulator)

5. The BER (Bit Error Rate) Meter , comparing transmitted and decoded bit and computing the ratio

between erroneous bits and total transmitted bits (BER meter)

6. The main program (test simple.cpp)

System Description

The aim of the Laboratory session is to understand the construction of a Simulator in C++ of a commu-

nication system and compute its performances in terms of Bit Error Rate for different QAM modulation

schemes. The block diagram of the simulated channel is shown in Figure 1.

Each block is implemented in the simulator defining a proper class in C++.

The source produces a sequence ū of random bits. The modulator maps sets of bits into QAM constellation

points according to the size of constellation adopted.

The sequence x̄ is transmitted over the AWGN channel where a sample of Gaussian Noise is added to each

symbol. The received sequence ȳ reaches the Demodulator that produces the bits sequence ˆ̄u according to

the minimum distance criterion from nominal points of the modulation scheme.

The Block BER Meter compares the received sequence ˆ̄u with the sent sequence ū and estimates the Bit

Error Probability computing the ratio between the number of wrong bits and the total number of transmitted

bits.

The parameters set by the user from an input file are the maximum number of frames fmax, the range of
Eb

N0
values, the modulation efficiency m, i.e. the number of bits carried by each QAM symbol.

Each frame is made by 20 modulated symbols, so that the total number of bits is 20·fmax ·m.

Source
Modulator

QAM
+

Demodulator

QAM

BER

Meter

ū x̄ ȳ ˆ̄u

ñ

Figure 1: System Block Diagram

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 2 of 37

Advanced Coding PC Sessions

The time evolution of the simulation is frame by frame, implemented with a loop in which:

- It generates 20·m bits;

- It takes groups of m bits to obtain 20 symbols x̄ with unitary average energy;

- It adds to each symbol a Gaussian sample ñ with zero mean and variance N0

2 ;

- It demodulates each received symbol ȳ according to the Voronoi regions of the selected modulation

scheme;

- It counts the number of error bits comparing the bit sequence ū with the demodulated ˆ̄u;

- In order to consider the BER estimation reliable, we require to count at least 100 errors. When this

condition is reached, a relative flag variable is set to true;

The simulator exits from the loop either if the reliability condition is verified, or if the maximum number of

frames fmax is reached. The simulation is run for each value of Eb

N0
.

Results Discussion

Outputs of the simulator are the total number of generated bits, the total number of errors counted, the Bit

Error Probability estimation computed as the ratio between the number of errors and the total number of bits.

Eb

N0
[dB]

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

B
E
R

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Simulation

Theoretical

4-QAM

16-QAM

64-QAM

256-QAM

1024-QAM

Figure 2: BER estimation for different QAM modulations.

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 3 of 37

Advanced Coding PC Sessions

Modulation Efficiency m

2 4 6 8 10

E
b

N
0
[d
B
]

0

5

10

15

20

25

30

BER=10
-2

BER=10
-3

BER=10
-4

BER=10
-5

Figure 3: Required
Eb
N0

to reach a given BER Target varying with the Modulation Efficiency.

The simulation is executed with fmax = 2 · 106, Eb

N0
= [0, 30] dB and different values of m = [2, 4, 6, 8, 10].

In Figure 2 we show the BER estimation curves obtained from the simulation compared with the theoretical

ones, according to the generic expression for the QAM modulation:

Pb(e) =

√
M − 1√

M · log2
√
M
· erfc

(√
3 · log2M

2(M − 1)

Eb
N0

)

where M = 2m is the constellation cardinality.

In Figure 3 we report the required
Eb
N0

to reach a given BER target varying with the Modulation Efficiency.

We can notice that increasing the constellation cardinality, we need a larger value of Eb/N0 to achieve a

target Bit Error Rate.

This is due to the fact that increasing the constellation size and keeping equal to one the average energy,

the distance between the nominal points reduces and so samples of noise with lower value are sufficient to

carry out the transmitted symbols from the correct Voronoi region.

Anyway a modulation with a symbol that includes more bits, allows to increase the transmission rate.

So there is a trade off between Error Probability and rate requirements.

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 4 of 37

Advanced Coding PC Sessions

BER Meter Class Implementation

We implemented a simplified version of the available BER Meter class.

The header file contains the attributes and the methods of the class, all the attributes are declared private,

so they are accessible only within the same class. Methods are instead public, so that they can be externally

accessed.

The attributes are the following:

1. nerr, the number of errors;

2. ncountedbits, the number of counted bits;

3. minerr, the minimum number of counted errors to consider the BER measure reliable;

4. delay, the delay between the transmitted and the received sequence.

The methods are the following:

1. BER M is the constructor of the class, it simply calls the method reset when an object of this class is

created.
BER_M::BER_M()

2 {
Reset();

4 }

2. ~BER M is the destructor of the class, it is called when the object is deleted to perform some useful

instructions. In our case, we don’t use it.
BER_M::˜BER_M()

2 {
}

3. SetParameters sets the attributes delay and minerr.

The delay is set to 0, since we assumed that the channel does not introduce delay.
void BER_M::SetParameters(const int delay, const int minerr)

2 {
this->minerr = minerr;

4 this->delay = 0;
Reset();

6 }

4. Reset sets to 0 the attributes nerr and ncountedbits, it is called by the constructor of the class.
void BER_M::Reset()

2 {
this->nerr = 0;

4 this->ncountedbits = 0;
}

5. Run compares the transmitted and received sequences, updating ncountedbits and nerr.

The error bits are checked by performing a modulo 2 sum operation.
void BER_M::Run(const int nbits, const int* stream1, const int* stream2)

2 {
int i;

4 for (i=0; i<nbits; i++)
{

6 ncountedbits++;
nerr += stream1[i]ˆstream2[i];

8

}
10 }

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 5 of 37

Advanced Coding PC Sessions

6. IsReliable verifies if nerr is greater than minerr, returning a boolean value that is used as exit

condition from the loop of the simulation.

The method is called at the end of each frame, after the Run method.

bool BER_M::IsReliable()
2 {

if (nerr >= minerr) return true;
4 else return false;

6 }

7. Display saves in a file the ratio between nerr and ncountedbits that is the BER estimation, the

value of nerr and ncountedbits.

void BER_M::Display(FILE* file)
2 {

fprintf(file, "BER = %e\n", (double)nerr / ncountedbits);
4 fprintf(file, "nerr = %d\n", nerr);

fprintf(file, "ncounted bits = %d\n", ncountedbits);
6 }

8. Display on Line visualizes the same results shown by the method Display on stdout that has

to be passed as argument.

void BER_M::Display_on_Line(FILE* file)
2 {

fprintf(file, "%e\t", (double)nerr / ncountedbits);
4 fprintf(file, "%d\t", nerr);

fprintf(file, "%d\t", ncountedbits);
6 }

The header file BER M.h is the following:

#pragma once
2 #include <stdio.h>

4 class BER_M
{

6 public:
BER_M();

8 ˜BER_M();

10 void SetParameters(const int delay, const int minerr);
void Reset();

12 void Run(const int nbits, const int* stream1, const int* stream2);
bool IsReliable();

14 void Display(FILE* file = stdout);
void Display_on_Line(FILE* file = stdout);

16

private:
18 int nerr;

int ncountedbits;
20 int minerr;

int delay;
22

};

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 6 of 37

Advanced Coding PC Sessions

PC Session 2: Limits of Coding

Purpose

Computation of lower bounds to achievable frame error probability for several block sizes, codulator rates

and 2 dimensional modulations

Problem Statement

1. Compute lower bounds on achievable performance (FER) for

a. Information Block sizes 100, 1000, 10000, 100000, Infinity

b. Modulations (2, 8, 16)-PSK and (4, 16)-QAM

c. FER 10−1 : 10−8.

2. Write a report with the obtained results and comments.

Available (new) software

Program for the computation of the capacity of 2D modulations and sphere packing bound.

System Description

The aim of the Laboratory session is to compute the limits of coding techniques in terms of Eb/N0 required

to achieve a given mutual information.

First of all, we perform an analysis for infinite length block size. We compute the loss introduced by the use of

finite 2D constellation cardinality with respect to the theoretical unconstrained results obtained by Shannon.

Then, we proceed by evaluating the worsening of performances in terms of Frame Error Rate (FER) when

the block size progressively reduces.

Source Encoder
(rate rc)

Serial to Parallel
(1 : m)

Modulator
(M = 2m) +

Channel
(B = NRm/2)

Rs Re Rm

AWGN Noise

Codulator (rate r)

Figure 4: System Block Diagram

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 7 of 37

Advanced Coding PC Sessions

Let us consider the system shown in Figure 21 where:

- Rs [bits/s] is is the Information bit rate;

- Re [bits/s] is the Coded bit rate;

- rc =
Rs
Re

is the rate of the encoder;

- Rm =
Re
m

[Baud] is the symbol rate;

- M = 2m is the constellation cardinality;

- N is the dimensionality of the constellation.

The Encoder and the Modulator can be considered as a single system block called Codulator, which receives

information bits in input at rate Rs and delivers channel symbols at rate Rm. So we may define the codulator

rate as r =
Rs
Rm

=
mRs
Re

= mrc.

Shannon’s formula for Channel coding over AWGN channel is the following:

C =
1

2
log2

(
1 +

2rEb
NN0

)
(1)

Where C = sup
p(x)

I(X,Y) is the channel capacity, I(X,Y) is the mutual information of the channel.

The Shannon Theorem for AWGN channel imposes a limit on the rate, 0 ≤ r ≤ C of the communication,

but ensures the existence of a code that achieves arbitrary low error probability for infinite block size.

By introducing the Bandwidth Efficiency: εb =
Rs
B

=
2Rs
NRm

=
2r

N

We can rewrite the previous formula as follows:

C =
1

2
log2

(
1 + εb

Eb
N0

)
(2)

Since 0 ≤ r ≤ C, by inverting the previous expression, the minimum Eb/N0 required to achieve an infinitely

reliable transmission for a given Bandwidth Efficiency is:

Eb
N0

=
2εb − 1

εb
(3)

Constrained Signal Set Analysis

The capacity has a closed-form expression for 2D constellation:

C = log2(M)− 1

2π

∫∫ +∞

−∞
d(u, v)e

−(u2+v2)
2 dudv (4)

where:

d(u, v) =
1

M

M∑
j=1

log2

(
M∑
i=1

exp

[
−Es
N0

[
(aj − ai)2 + (bj − bi)2

]
−
√

2Es
N0

[u · (aj − ai) + v · (bj − bi)]
])

(5)

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 8 of 37

Advanced Coding PC Sessions

-
Es
N0

is the average energy per symbol over the noise power spectral density;

- (ai, aj) and (bi, bj) are the normalized coefficients of the constellation points.

The expression (5) can be simplified if the constellation has a geometrical uniform distribution (such as

M-PSK).

d(u, v) = log2

(
M∑
i=1

exp

[
−Es
N0

[
(aj − ai)2 + (bj − bi)2

]
−
√

2Es
N0

[u · (aj − ai) + v · (bj − bi)]
])

(6)

Eb

N0
[dB]

0 2 4 6 8 10 12 14 16 18 20

I(
X

,Y
)

0.5

1

1.5

2

2.5

3

3.5

4

Capacity

16-QAM

16-PSK

8-PSK

4-QAM

BPSK

Figure 5: Capacity of 2D Constellations.

In Figure 5 we plot the Capacity as a function of the minimum Eb/N0 required to achieve unlimited reliabity

over an AWGN channel.

The plot is obtained as follows:

- Considering a range of Es

N0
= [0, 20] dB;

- Compute the Capacity by using the expressions (5), (6), with a numerical approximation for (4);

- The minimum Eb/N0 for the given constellation is computed by the relationship: Eb

N0
= 1

C · Es

N0
;

- The minimum Eb/N0 for the unconstrained case is computed from (3);

As we can see from the obtained curves, using unconstrained modulation format, we can reach arbitrary high

values of Mutual Information increasing Eb/N0. By limiting the constellation’s cardinality to M, instead,

the values assumed by Mutual Information cannot exceed m, i.e. the number of bits carried by each symbol.

The loss of finite constellations with respect to the Gaussian distribution derives from the Shaping Loss

introduced by the modulation. We assume that all the points of the constellation are transmitted with same

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 9 of 37

Advanced Coding PC Sessions

probability 1
M , differently from the optimal Gaussian distribution. The shaping loss of M-QAM with large

M is about 1.53 dB for high values of Eb/N0, while for low values (Eb/N0 ' 0 dB) it is negligible. Infact,

apart from BPSK case (corresponding to 1D constellation), all curves behave like Shannon’s in that region.

Using constellation shaping technique is possible to produce a Gaussian-like distribution over constellation

in order to reduce the gap of 1.53 dB.

The reliability for M-QAM constellations is reached for lower values of Eb/N0 with respect to M-PSK since

the minimum distance between two adjacent points is larger.

Moreover, using a constellation with greater cardinality allows to save Eb/N0 to reach a target rate.

Finite Block Length Analysis

Achieving an infinitely reliable communication is possible under the assumption of using blocks of infinite

size if Eb/N0 is greater than the value expressed by (3). In practice, this assumption can not be adopted

for latency and memory requirements. In spite of this we introduce the Frame Error Rate (FER) as new

parameter to design the code. It is defined as the ratio between the number of correct received block

sequences and the number of total transmitted sequences. In order to understand properly the performances

of a code, it is suitable to find a lower bound that ensures that it does not exist a code that can reach

better performances. The sphere packing gives a lower bound to the FER for a code under the assumption

of adopting an unconstrained modulation. The bound is in the form Pw(e) ≥ Qn(θ,A), where:

- Pw(e) is the word error probability;

- Qn(θ,A) '
∣∣G sin θ exp (−(A2 −AG cos θ)/2)

∣∣n√
nπ(1 +G2) sin θ

∣∣AG sin2 θ − cos θ
∣∣ ;

- G =
1

2
A cos θ +

√
A2 cos2 θ + 4;

- A =

√
2
k

n

Eb
N0

;

We can notice that A depends on the information block size k and on Eb/N0.

A reasonable assumption is that the loss of the sphere packing bound at a given rate with respect to the

unconstrained capacity can be applied also to the constrained capacity, leading to the relationship:

Eb
N0

∣∣∣∣
M,Pw,k

≥ Eb
N0

∣∣∣∣
M

+

(
Eb
N0

∣∣∣∣
U,Pw,k

− Eb
N0

∣∣∣∣
U

)
(7)

where:

-
Eb
N0

∣∣∣∣
M,Pw,k

,
Eb
N0

∣∣∣∣
U,Pw,k

are the minimum required Eb/N0 for a code of length k to achieve a word

error probability Pw using respectively the modulation M and the uncon-

strained Gaussian modulation U ;

-
Eb
N0

∣∣∣∣
M
,
Eb
N0

∣∣∣∣
U

are the minimum required Eb/N0 for an infinite block length k →∞ code

using respectively the modulationM and the unconstrained Gaussian mod-

ulation U ;

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 10 of 37

Advanced Coding PC Sessions

Eb

N0
[dB]

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

F
E

R

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

U , k → ∞

M, k → ∞

M, k = 102

M, k = 103

M, k = 104

M, k = 105

Figure 6: Lower Bounds of FER for 16-QAM with r = 0.99, k = 100, 1000, 1000, 10000, k →∞.

Eb

N0
[dB]

4 6 8 10 12 14 16 18 20

F
E

R

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

U , k → ∞

M, k → ∞

M, k = 102

M, k = 103

M, k = 104

M, k = 105

Figure 7: Lower Bounds of FER for 16-QAM with r = 3.99, k = 100, 1000, 1000, 10000, k →∞.

In Figure 6 and 7 we plot the lower bounds of the FER as function of Eb/N0 using 16-QAM modulation, for

different block size k = 10, 100, 1000, 10000, 100000 and for codulator rates 0.99 and 3.99 respectively.

As we expect the Infinite Block Length size curves have a vertical behaviour according to the Shannon

Theorem. With respect to the Unconstrained Case, there are two types of loss: one introduced by the

constrained modulation and the other one due to the block size.

The loss due to the modulation is strictly related to the codulator rate. The losses of Eb/N0 are 0.056 dB

for r = 0.99 and 7.24 dB for r = 3.99.

For low rate values, the loss is smaller since the 16-QAM rate curve behaves like the Capacity as we can see

in Figure 5.

For r = 3.99 the curve is in a region where the slope is much lower and so, it requires an higher Eb/N0 to

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 11 of 37

Advanced Coding PC Sessions

achieve that rate.

We can notice in Figure 6 and 7 that reducing the block size, we require larger values of Eb/N0 to achieve

the same FER value. Differently from the loss due the modulation, the loss due to the block size is almost

independent from the codulator rate.

We can appreciate this behaviour in Figure 8 where we plot the loss of Eb/N0, using 16-QAM modulation,

required to achieve a FER = 10−4 varying the block size respect to the Infinite block size case.

Information Block Size

10
0

10
1

10
2

10
3

10
4

10
5

∆
E

b

N
0
[d
B
]

2

4

6

8

10

12

14
r=0.99

r=1.34

r=1.54

r=1.97

Figure 8: Eb/N0 Loss of 16-QAM modulation for different block sizes and rates at FER = 10−4.

In the following plots, (Figure 9b, 10b, 11b, 12b) we report the lower bounds of FER using different mod-

ulation formats and block sizes for the same codulator rate r ' 2. The loss introduced by the Information

Block Size is independent from the adopted modulation. The loss for each block size respect to the Infinite

Block Size case is the same for each modulation.

From the capacity we need 1.76 dB to achieve a rate equal to 2.

In Table 1 we report the Eb/N0 loss respect the capacity values for different modulations and block size.

We can notice that choosing a greater block length and constellation size reduces the loss. The losses of

16-PSK and 8-PSK are almost the same for r = 2. The 4-QAM has a greater loss with respect the other

modulations.

k = 100 k = 103 k = 104 k = 105 k →∞
4-QAM 6.59 dB 5.15 dB 4.59 dB 4.40 dB 4.31 dB
8-PSK 3.34 dB 1.90 dB 1.34 dB 1.15 dB 1.05 dB
16-PSK 3.32 dB 1.90 dB 1.33 dB 1.14 dB 1.04 dB
16-QAM 2.64 dB 1.18 dB 0.62 dB 0.42 dB 0.33 dB

Table 1: Eb/N0 Loss vs Capacity to achieve Pw(e) = 10−4 for different modulations and block size

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 12 of 37

Advanced Coding PC Sessions

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

(a) 4-QAM constellation

Eb

N0
[dB]

1 2 3 4 5 6 7 8 9 10

F
E

R

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

U , k → ∞

M, k → ∞

M, k = 102

M, k = 103

M, k = 104

M, k = 105

(b) Lower Bounds of FER

Figure 9: Lower Bounds of FER for 4-QAM with r ' 2, k = 100, 1000, 1000, 10000, k →∞.

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

(a) 8-PSK constellation

Eb

N0
[dB]

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

F
E

R

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

U , k → ∞

M, k → ∞

M, k = 102

M, k = 103

M, k = 104

M, k = 105

(b) Lower Bounds of FER

Figure 10: Lower Bounds of FER for 8-PSK with r ' 2, k = 100, 1000, 1000, 10000, k →∞.

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 13 of 37

Advanced Coding PC Sessions

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

(a) 16-PSK constellation

Eb

N0
[dB]

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

F
E

R

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

U , k → ∞

M, k → ∞

M, k = 102

M, k = 103

M, k = 104

M, k = 105

(b) Lower Bounds of FER

Figure 11: Lower Bounds of FER for 16-PSK with r ' 2, k = 100, 1000, 1000, 10000, k →∞.

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

(a) 16-QAM constellation

Eb

N0
[dB]

1.5 2 2.5 3 3.5 4 4.5 5 5.5

F
E

R

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

U , k → ∞

M, k → ∞

M, k = 102

M, k = 103

M, k = 104

M, k = 105

(b) Lower Bounds of FER

Figure 12: Lower Bounds of FER for 16-QAM with r ' 2, k = 100, 1000, 1000, 10000, k →∞.

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 14 of 37

Advanced Coding PC Sessions

PC Session 3: SISO Decoder

Purpose

1. To design and implement a C++ class realizing a Sliding Window with grouped decisions Soft-Input

Soft-Output decoder (SWG-SISO), with input and output binary LLR.

2. To simulate the performance of a transmission system of Figure 1 employing a binary convolutional

code, 2-PAM modulation, AWGN channel and a the developed binary SWG-SISO decoder.

3. To compute the BER performance at the input and at the output of the SISO decoder versus.

Problem Statement

1. Commented developed class (files SISO Decoder.cpp and SISO Decoder.h)

2. Simulation results relative to the rate 1
2 , 4 and 8 states convolutional encoder reporting the 4 BER

measures versus the Es/N0 in [dB]

Available (new) software

1. Main program for the simulation that should be used for the

2. Declaration of the class SISO Decoder and its empty implementation (SISO Decoder.cpp)

Advanced Coding PC Session 3

PC Session 3: SISO decoding

Purpose

1. To design and implement a C++ class realizing a Sliding Window with grouped decisions Soft-Input

Soft-Output decoder (SWG-SISO), with input and output binary LLR.

2. To simulate the performance of a transmission system of Figure 1 employing a binary convolutional

code, 2-PAM modulation, AWGN channel and a the developed binary SWG-SISO decoder.

3. To compute the BER performance at the input and at the output of the SISO decoder versus.

Source
Convolutional

Encoder

Modulator

2− PAM

Modulator

2− PAM

Soft

Demodulator

Soft

Demodulator

BER

Meter

BER

Meter

BER

Meter

BER

Meter

SISO

Decoderinf enc

infRXO

encRXO

infRXI

encRXI

k0 bits

n
0

b
it

s

Figure 1: System Block Diagram

Content of the Report

1. Commented developed class (files SISO Decoder.cpp and SISO Decoder.h)

2. Simulation results relative to the rate 1
2 , 4 and 8 states convolutional encoder reporting the 4 BER

measures versus the Es/N0 in [dB]

Available (new) software

1. Main program for the simulation that should be used for the

2. Declaration of the class SISO Decoder and its empty implementation (SISO Decoder.cpp)

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 1 of 8

Figure 13: System Block Diagram

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 15 of 37

Advanced Coding PC Sessions

System Description

The aim of the PC session is to implement a SISO decoder by building a C++ class and to analyze the

performances of the system computing the coding gain.

The block diagram of the simulated system is shown in Figure 21.

The simulater evolves in time frame by frame. For each frame the Source generates the information bits

(inf). In order to compare the performances of the coded and uncoded transmitting system, we simulate

two different AWGN channels with the same variance σ2
N . The Convolutional Encoder takes k0 information

bits to generate the sequence enc of n0 coded bits, so that its rate is rc = k0
n0

.

Both the sequences inf and enc are modulated with a 2-PAM modulation, then they are processed by

the Soft Demodulator block, that emulates the channel behaviour adding noise samples, computes the log-

likelihood ratio (LLR) sequences infRXI and encRXI.

The Soft Input Soft Output (SISO) Decoder elaborates the LLR input sequences infRXI, encRXI and

provides the computed LLR output sequences infRXO, encRXO.

At the end, we perform hard demodulation on the LLR sequences, according to the Voronoi region rule for

the 2-PAM constellation and estimate the BER before and after the SISO block, by counting the number of

bits in error and dividing by the total number of transmitted bits.

The generic SISO module is a four-port device that, for the k-th Trellis Section takes as input the a priori

LLRs of the uncoded and coded bits: λuk(I) and λck(I) and provides the extrinsic a posteriori LLRs on

uncoded and coded bits: λuk(O) and λck(O).

The generic edge e of the Trellis section is uniquely identified by the starting state sS(e), the ending state

sE(e) and the given label u/c where u is the information bit sequence in input and c is the coded sequence

in output from the Convolutional Encoder.

u/c

e
sS(e)

sE(e)

(a) Trellis Edge

SISO
Block

λuk(I)

λck(I) λck(O)

λuk(O)

(b) SISO Module

The basic idea of SISO decoding is to reconstruct the Trellis evolution in time of the Encoder.

We define the output branch metric bk(u/c, O) as the likelihood of being in a certain edge of the Trellis

section at time instant k.

bk((u/c), O) =
∗

max
e:u(e)=u,c(e)=c

αk−1(sS(e)) + bk(u(e)/c(e), I) + βk(sE(s)) (8)

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 16 of 37

Advanced Coding PC Sessions

where:

- αk−1(sS(e)) is the likelihood of being in state sS(e) at time k − 1 given the past observations

(Forward Path Metric);

- βk(sE(e)) is the likelihood of being in state sE(e) at time k given the future observations

(Backward Path Metric);

- bk(u(e)/c(e), I) is the input branch metric and depends on the input LLRs.

The Forward and Backward Path Metrics expressing the likelihood of being in the state s at time instant k

are computed recursively by:

αk(s) =
∗

max
e:sE(e)=s

[
αk−1(sS(e)) + bk(u(e)/c(e), I)

]
βk(s) =

∗
max

e:sS(e)=s

[
βk+1(sE(e)) + bk+1(u(e)/c(e), I)

]
(9)

where bk(u(e)/c(e), I) is the input branch metric computed by:

bk(u(e)/c(e), I) = λk(u(e), I) + λk(c(e), I) (10)

λk(u(e), I) and λk(c(e), I) are the likelihood of the symbols u/c computed by aggregation combining the

likelihood of the constituent bits:

λk(u, I) =

k0−1∑
i=0

uiλ
u
(kk0+i)

λk(c, I) =

n0−1∑
i=0

ciλ
c
(kn0+i)

(11)

From the output branch metrics computed by (8), we obtain the LLRs on symbols. In order to obtain LLRs

on bits we need to use marginalization:

λukk0+i(O) =
∗

max
u:ui=1

bk(u/c, O)− ∗
max
u:ui=0

bk(u/c, O)− λukk0+i(I)

λckn0+i(O) =
∗

max
c:ci=1

bk(u/c, O)− ∗
max
c:ci=0

bk(u/c, O)− λckn0+i(I) (12)

In line of principle, the SISO may be run to decode the entire sequence in one-shot, but this induces a huge

requirement of memory and delay.

The solution to this is the adoption of the Sliding Window with Grouped Decisions SISO (SWG-SISO).

The SWG-SISO decodes the sequence by splitting it into blocks of length Nbl.

The backward recursion at time k requires the knowledge of all the backward path metrics at time > k.

In order to solve this, we initialize the backward path metrics at time Nbl+D−1 with a uniform distribution

1/N where N = 2ν is the number of states.

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 17 of 37

Advanced Coding PC Sessions

If D is sufficiently large (D > 6 − 7ν) independently from starting condition of backward recursion, the

algorithm converges to the true result.

In order to decode Nbl Trellis sections, we first perform backward recursion on Nbl + D − 1 steps, then we

proceed with Nbl forward recursion steps, as shown in Figure 15.

At the end of the decoding of the actual block, we shift the window of Nbl in order to decode the next block.

Decoded Block
Inizialization
Backward
Metrics

(m− 1)Nbl Nbl mNbl − 1 D mNbl +D − 1

βk(s) =
1

N

k −Nbl k k +D

Backward Recursion

Forward Recursion

Figure 15: SWG-SISO

SISO Implementation

The implementation of the SWG-SISO Decoder is made by building a C++ Class. The Aggregation and

Marginalization are implemented respectively by the methods BitToBranch and BranchToBit.

The code of the BitToBranch method is the following:

void SISO_Decoder::BitToBranch(const int* inp)
2 {

int temp,k,l,s;
4 s=1;

for(k=0;k<nbit;k++)
6 {

temp = branch[s] = *inp++;
8 for(l=1;l<s;l++)branch[s+l]=temp+branch[l];

s *=2;
10 }

}

The array branch contains the input LLRs on symbols obtained by aggregation of bits LLRs of the input

inp.

The aggregation is performed in an efficient way.

The value nbit=k0+n0 is the number of bits that form a symbol.

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 18 of 37

Advanced Coding PC Sessions

The following pseudocode shows the aggregation for k0=1, n0=2:

branch[0]=λ(000)=0;

s=1;

branch[1]=λ(100)=λu;

s=2;

branch[2]=λ(010)=λc1;

branch[3]=branch[2]+branch[1]=λ(110)=λc1 + λu;

s=4;

branch[4]=λ(001)=λc2;

branch[5]=branch[4]+branch[1]=λ(101)=λc2 + λu;

branch[6]=branch[4]+branch[2]=λ(011)=λc2 + λc1;

branch[7]=branch[4]+branch[3]=λ(111)=λc2 + λc1 + λu;

The code of the BranchToBit method is the following:

void SISO_Decoder::BranchToBit(int* out)
2 {

int k,j,n0,n1;
4 int Nu=nlab;

for(j=nbit-1;j>0;j--)
6 {

Nu>>=1;
8 n0=brancho[0];

for(k=1;k<Nu;k++)
10 maxx(n0,brancho[k]);

n1 = brancho[Nu];
12 maxx(brancho[0],brancho[Nu]);

for(k=1;k<Nu;k++)
14 {

maxx(n1,brancho[Nu+k]);
16 maxx(brancho[k],brancho[Nu+k]);

}
18 out[j]=n1-n0;

}
20 out[0]=brancho[1]-brancho[0];

}

The array brancho contains the output LLRs on symbols that form the labels of each branch, nlab is the

number of possible labels equal to 2nbit, out is a vector containing the result of the marginalization for each

bit.

The following pseudocode shows the aggregation for k0=1, n0=2:

Nu=nlab=2nbit;

j=2;

Nu=4;

n0=max*(brancho[0],brancho[1],brancho[2],brancho[3])

=max*(λ(000),λ(100),λ(010),λ(110));

n1=max*(brancho[4],brancho[5],brancho[6],brancho[7])

=max*(λ(001),λ(101),λ(011),λ(111));

brancho[0]=max*(brancho[0],brancho[4])=max*(λ(000),λ(001))=λ(00-);

brancho[1]=max*(brancho[1],brancho[5])=max*(λ(100),λ(101))=λ(10-);

brancho[2]=max*(brancho[2],brancho[6])=max*(λ(010),λ(011))=λ(01-);

brancho[3]=max*(brancho[3],brancho[7])=max*(λ(110),λ(111))=λ(11-);

out[2]=n1-n0;

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 19 of 37

Advanced Coding PC Sessions

j=1;

Nu=2;

n0=max*(brancho[0],brancho[1])=max*(λ(00-),λ(10-));

n1=max*(brancho[2],brancho[3])=max*(λ(01-),λ(11-));

brancho[0]=max*(brancho[0],brancho[2])=max*(λ(00-),λ(01-))=λ(0--);

brancho[1]=max*(brancho[1],brancho[3])=max*(λ(10-),λ(11-))=λ(1--);

out[1]=n1-n0;

out[0]=brancho[1]-brancho[0];

This implementatation of marginalization is recursive. The branch metrics are divided into groups: one with

the last bit equal to 1, the other with the last bit equal to 0 and we compute the output by using the max*

operator. The procedure is iterated on the second and first bit. By doing this, we implement a recursion

that allows to reduce the computational complexity from O(N ·2N), applying the Equation (12) to O(3 ·2N)

where N is the number of labels.

The output LLRs on bits are obtained by subtracting from out the corresponding input LLR on bit.

Results Discussion

The simulation is performed using 4 and 8 states Non Systematic Non Recursive (NSNR) Convolutional

Encoder with rate r =
1

2
.

The encoder representations and the relative Trellis Diagrams are shown in Figure 16 and 17.

The chosen Parameter for the SWG-SISO are D = 20 and Nbl = 1000.

00

10

01

11

00

10

01

11

0/00

1/11

0/10
1/01

0/11

1/00

0/01

1/10

(a) Trellis Diagram

D D

+ +

+
c0

c1

u

(b) Convolutional Encoder Structure

Figure 16: 4 state NSNR Encoder, r =
1

2
, G = [1 +D +D2, 1 +D2]

In Figure 18 we plot the BER curves of the information and encoded bits before and after the SISO block

obtained taking hard decision based on the sign of the LLRs sequences infRXI, encRXI, infRXO and

encRXO. As we expect the BER performances before SISO are the same for both the information and

encoded bits. The slight difference at high Eb/N0 values is due to the insufficient statistics of counted errors.

After the SISO the information bits error rate is lower than encoded ones since with r =
1

2
only half of errors

affect the information bits.

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 20 of 37

Advanced Coding PC Sessions

000

100

010

110

001

101

011

111

000

100

010

110

001

101

011

111

0/00

1/11

0/10

1/010/11

1/00

0/01

1/10

0/
11

1/
00 0/

01

1/10

0/00

1/11

0/10

1/01

(a) Trellis Diagram

D D D

+ +

+

+

+
c0

c1

u

(b) Convolutional Encoder Structure

Figure 17: 8 state NSNR Encoder, r =
1

2
, G = [1 +D +D2 +D3, 1 +D2 +D3]

In Figure 19 we plot the Information Bit Error curves as function of Eb/N0 for 4 and 8 state Encoders before

and after the SISO. As we expect, increasing the constraint length of the encoder the performances improve

since the correction capability of the Convolutional Encoder is strictly related to its memory.

In Figure 20 we plot the coding gain for different values of BER for both the two encoders computed as the

difference between Eb/N0 required to achieve a target BER value before and after the SISO. As we expect,

the coding gain becomes almost constant decreasing the BER target. The 4 and 8 State Encoders reach

respectively 6.8 dB and 8 dB of gain.

Eb

N0
[dB]

-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12

B
E
R

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

infRXI

encRXI

infRXO

encRXO

Figure 18: BER curves before and after SISO for 4 state Encoder.

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 21 of 37

Advanced Coding PC Sessions

Eb

N0
[dB]

-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12

B
E
R

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Before SISO

4-State after SISO

8-State after SISO

Figure 19: Information BER before and after SISO for 4 and 8 state Encoders.

BER

10
-6

10
-5

10
-4

10
-3

10
-2

∆
E

b

N
0

[d
B
]

6

6.5

7

7.5

8

8.5

4-State

8-State

Figure 20: Coding gains of 4 and 8 States Convolutional Codes varying the BER target.

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 22 of 37

Advanced Coding PC Sessions

PC Session 4: PCCC Decoder

Purpose

1. To understand the simulation program for a PCCC.

2. To understand the termination of convolutional codes.

3. To simulate and plot the performance of a rate 1/3 PCCC with different constituent encoders and

interleaver block sizes.

Problem Statement

1. BER and FER plot with 4 and 8 state encoders and interleaver. size 100, 1000 and 10000

2. Comment on the plots

Available (new) software

1. Main program for the simulation that should be used for the simulation of PCCC

2. Interleaver class and a new version of SISO Decoder.

System Description

Source Convolutional
Encoder

I

Convolutional
Encoder

Modulator
2− PAM

Modulator
2− PAM

AWGN
Channel

AWGN
Channel

Soft
Demodulator

Soft
Demodulator

SISO
Decoder

SISO
Decoder

I−1 I

inf enc1 mod1 rec1 enc1RX

enc2 mod2 rec2 enc2RX

infRX

infpRX

infRX1

Figure 21: System Block Diagram

The aim of the laboratory session is to analyze the performances of communication system using a Parallel

Concatenated Convolutional Code (PCCC). The system block diagram is shown in Figure 21.

The Source generates a sequence of inf information bits of length N .

The PCCC Encoder is composed of two constituent Convolutional Encoders working in parallel: The Upper

Encoder generates the sequence enc1 of encoded bits with rate r1. The information sequence is passed to

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 23 of 37

Advanced Coding PC Sessions

an Interleaver, then the Lower Encoder generates the sequence enc2 with rate r2.

The overall PCCC Encoder has rate r =
r1 · r2
r1 + r2

.

The two sequences enc1 and enc2 are both mapped by a 2-PAM modulation scheme, to produce the symbol

sequences mod1 and mod2 that are transmitted over an AWGN Channel. The received sequences are rec1,

rec2 are passed to Soft Demodulators that produces LLRs sequences on coded bits: enc1RX, enc2RX.

The two sequences enc1RX and enc2RX are processed by the PCCC Decoder to extrapolate the information

bits.

The PCCC Decoder is an Iterative Decoder composed by two SISO Decoders that share informations about

the LLRs on output information bits.

The extrinsic information computed from one encoder is considered as a-priori information for the other one

and vice-versa.

L-SISO 1
I

L-SISO 2
I−1++

+ APP Decision

λ1j

λ2m

λ̃
(n−1)
2k

λa

λ̃
(n)
1k λ̃

(n)
1ρ(k) λ̃

(n)
2ρ(k) λ̃

(n)
2k

Figure 22: Iterative SISO Decdoder

The Decoding Procedure for the generic iteration of index n is the following:

- The Upper SISO Decoder takes as input:

· λ1j = enc1RX LLRs on coded bits coming from the Soft Demodulator;

· λa A Priori LLRs;

· λ̃
(n−1)
2k = infRX1 Extrinsic LLRs from the Lower SISO Decoder at the previous iteration.

- The input sequences are used to update the extrinsic LLRs sequence on information bits: λ̃
(n)
1k =infRX.

- The output sequence λ̃
(n)
1k is interleaved producing the sequence λ̃

(n)
1ρ(k) =infpRX.

- The Lower SISO Decoder takes as input:

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 24 of 37

Advanced Coding PC Sessions

· λ2m = enc2RX LLRs on coded bits coming from the Soft Demodulator;

· λa A Priori LLRs;

· λ̃
(n)
1ρ(k) = infpRX Extrinsic LLRs from the Upper SISO Decoder.

- The input sequences are used to update the extrinsic LLRs sequence on information bits: λ̃
(n)
2ρ(k).

- The resulting sequence λ̃
(n)
2ρ(k) is de-interleaved producing the output λ̃

(n)
2k =infRX1.

The above operations are repeated iterating between the two SISO Decoders.

At the first iteration, the upper SISO Decoder has no extrinsic informations from the Lower SISO Decoder

and so the sequence is initialized to zero: λ̃
(0)
2k = 0, under uniform distribution assumption.

At the end of iterations, a Hard Decision is performed according to the sign of the A Posteriori (APP)

extrinsic LLRs sequence.

λ
(n)(APP)

k = λ̃
(n)
1k + λ̃

(n)
2k + λa (13)

PCCC Decoder Implementation

The code that implements the iterative PCCC Decoder is shown in Listing 1.

for(nit=0;nit<niter;nit++)
2 {

if(nit==0)
4 SISODec1 ->RunBlock(0,enc1RX,infRX,0);

else
6 SISODec1 ->RunBlock(infRX1,enc1RX,infRX,0);

8 Interl->Run(1,infRX,infpRX);

10 SISODec2 ->RunBlock(infpRX,enc2RX,infpRX,0);
Interl->Run(1,infpRX,infRX1,false);

12

for(i=0;i<k0*N;i++)infRX[i]+=infRX1[i];

Listing 1: Code Implementing PCCC Decoder

Results Discussion

We analyze the performances of PCCC Decoder with rate r =
1

3
, Systematic Recursive constituent encoders

of 4, 8 states, interleavers of size 100, 1000, 10000.

The generic Systematic Recursive (SR) Encoder is characterized by Feed-Forward and Backward polynomials

whose coefficients are represented in octal basis by the pair [Z,H].

The constituent convolutional encoders used in the simulations are shown in Figure 23a, 23b.

For the 4 states SR encoder we use [Z,H] = [05, 07], for the 8 states SR encoder we use [Z,H] = [015, 013].

We compare the loss induced by the use of max operator instead of max∗ operator.

The max∗(·) operator is implemented by adding a correction factor obtained by a Look-Up Table (LUT) to

the value assumed by max(·) as shown in Figure 24. The dimension and the values of LUT depends on the

precision p. We set p = 3 and for this value of p we implement.

In Figure 25 we plot the BER performances by varying the interleaver size and using, respectively, max(·)
and max∗(·) operator. We can see that the BER curves improve when we increase the interleaver size. The

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 25 of 37

Advanced Coding PC Sessions

D D

+

+

+

(a) 4 states, r =
1

2
, G =

[
1,

1 +D2

1 +D +D2

]
D D

+

+

+ D

+

(b) 8 states, r =
1

2
, G =

[
1,

1 +D2 +D3

1 +D +D3

]

Figure 23: Constituent SR Encoders

drawback is the latency of the decoder.

We can recognize the two main regions of a code: the Waterfall and the Error Floor region. In the first region

the BER curve decreases very rapidly with Eb/N0, while in the second we do not obtain great improvement

increasing Eb/N0.

Comparing performances of 4 and 8 states encoders we can not say that one performs better than the other

for all values of Eb/N0. There is a point where the two curves cross each other. This implies that one encoder

is better than the other for lower values of Eb/N0, and vice versa for higher values.

In particular, the Waterfall Region of 4-State encoder is moved to the left with respect to the 8-State’s

one. However, its Error Floor Region occurs for a higher value of BER. This implies the crossing of the two

curves. In line of principle we aim to design a code that presents a Waterfall Region moved to the left as

much as possible, and an Error Floor region as low as possible, but PCCC is characterized by a higher Error

Floor Region when Waterfall Region moves to the left.

For large values of Eb/N0, performances are better increasing the number of states of constituent encoders.

However, the gain obtained increasing the number of states is smaller with respect to that one obtained

increasing the interleaver size (BER ∝ 1/N).

In Figure 26 we plot the FER performances by varying the interleaver size using, respectively, max(·) and

max∗(·) operator. We can recognize the same characteristics of BER curves.

− | · | LUT

+

a

b

max(a, b) max∗(a, b)

Figure 24: max∗(·) operator logical scheme.

In Figure 27 we compare the BER curves using the two different operators. The Interleaver size is set to

N = 10000. The approximation of max∗(·) with max(·) is suboptimal since performances are worse. The

loss introduced by the max(·) is less or equal to 0.5 dB and it increases if the number of states of Constituent

Encoders increases.

For large values of Eb/N0 we can notice that the performances are almost identical. When Eb/N0 is high

the probability of having paths with close metric in the Forward and Backward recursions is low, then the

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 26 of 37

Advanced Coding PC Sessions

Eb

N0
[dB]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

B
E
R

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

4-State,N=100

4-State,N=1000

4-State,N=10000

8-State,N=100

8-State,N=1000

8-State,N=10000

(a) max(·)

Eb

N0
[dB]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

B
E
R

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

4-State,N=100

4-State,N=1000

4-State,N=10000

8-State,N=100

8-State,N=1000

8-State,N=10000

(b) max∗(·)

Figure 25: BER curves at varying of interleaver size

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 27 of 37

Advanced Coding PC Sessions

Eb

N0
[dB]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

F
E

R

10
-4

10
-3

10
-2

10
-1

10
0

4-State,N=100

4-State,N=1000

4-State,N=10000

8-State,N=100

8-State,N=1000

8-State,N=10000

(a) max(·)

Eb

N0
[dB]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

F
E

R

10
-4

10
-3

10
-2

10
-1

10
0

4-State,N=100

4-State,N=1000

4-State,N=10000

8-State,N=100

8-State,N=1000

8-State,N=10000

(b) max∗(·)

Figure 26: FER curves at varying of interleaver size

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 28 of 37

Advanced Coding PC Sessions

Eb

N0
[dB]

0 0.5 1 1.5

B
E
R

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

8-State, max

8-State, max*

4-State, max

4-State, max*

Figure 27: Comparison of BER performances using max(·) and max∗(·), N = 10000

correction factor is almost zero and the two operators yield the same performances. Therefore the use of

max∗(·) improves performances only for low Eb/N0.

All the results shown until now, are obtained using a number of iterations in PCCC decoder equal to 10.

Then, we investigate the relation between performances and number of decoder iterations.

In Figure 28 we plot BER versus the number of iterations using 4-State Constituent Encoders with interleaver

size N = 1000 fixing the value of Eb/N0 for each curve.

We can see that for low number of iterations, we reach big improvements increasing it. For high number of

iterations, by further increasing the number of iterations, performances do not improve since the Decoder

does not change decision from one iteration to the other. In this case, it is time consuming to keep the

Decoder getting stuck in the loop. We can adopt as solution to exit from the loop when the Decoder’s

decision does not change for every bit of the information sequence, instead of using a fixed number of

iterations.

Finally, we point out that PCCC performances depend on the characteristics of Constituent Encoders.

PCCC adopts SR Encoders even if they are worse with respect to NSNR Encoders in terms of free distance

dfree. However, the Interleaver gain depends on the effective free distance deff,free and so SR yield better

performances. The SR Constituent Encoders must be designed in order to maximize this parameter. If the

Convolutional Encoder has a primitive polynomial associated to the Backward part, the distance is increased

and the performances are better.

In Figure 29 we compare the FER performances of PCCC with N = 10000 using the 4-State Constituent

Encoder of Figure 23a and the 4-State inverting the Forward and Backward polynomials. The first has a

Primitive Backward Polynomial D2 + D + 1, while the second has not since D2 + 1 = (D + 1)2 over the

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 29 of 37

Advanced Coding PC Sessions

Galois Fields of order 2. We can notice that the use of not Primitive Polynomials gets worse performances.

n° of iterations

0 2 4 6 8 10 12 14 16 18 20

B
E

R

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/N0=0 dB

Eb/N0=0.2 dB

Eb/N0=0.4 dB

Eb/N0=0.6 dB

Eb/N0=0.8 dB

Eb/N0=1 dB

Figure 28: Performances at varying of number of decoder iterations

Eb

N0
[dB]

0 0.5 1 1.5

F
E

R

10-2

10-1

100
H=[07],Z=[05]

H=[05],[Z=07]

Figure 29: FER performances comparing the use of Primitive Polynomials

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 30 of 37

Advanced Coding PC Sessions

PC Session 5: LDPC Decoder

Purpose

1. To understand the simulation program for an LDPC

2. To understand LDPC encoding by back substitution

3. To understand the difference between optimal and suboptimal decoding algorithm (min-sum-offset) for

LDPC

4. To simulate and plot the performance of the LDPC code for the DVB-S2 standard.

Problem Statement

1. BER and FER plot with rate 1/4 and 8/9 with medium block length (16200) with optimal and sub-

optimal decoder.

2. BER plot with rate 1/2 with optimal decoder and suboptimal decoder for different values of the offset

parameter beta (short block).

3. BER plot with rate 1/2 and the three values of available block length (short, medium and long code)

use the algorithm that you like.

4. Comment on the plots

Available (new) software

1. Main program for the simulation that should be used for the simulation of LDPC

2. LDPC Encoder and LDPC Decoder class

System Description

The aim of this laboratory is to evaluate the performances of Low Density Parity Check Codes (LDPC)

using DVB-S2 Standard.

LDPC Codes are a particular class of Linear Block Codes whose parity-check matrix H is sparse.

The block diagram of the simulation chain is reported in Figure 30.

The LDPC Encoder takes as input the information sequence inf, and for each block of k information bits

it generates blocks of n bits composing the sequence enc.

Since H is sparse, an efficient representation is to indicate the indices of ones for each row.

Here is reported an example for the suggested representation of H:

H =


h1,1 h1,2 h1,3 h1,4 h1,5

h2,1 h2,2 h2,3 h2,4 h2,5

h3,1 h3,2 h3,3 h3,4 h3,5

 =


1 1 1 0 0

0 1 1 1 0

1 0 1 0 1

→
h1 = [1, 2, 3]

h2 = [2, 3, 4]

h3 = [1, 3, 5]

(14)

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 31 of 37

Advanced Coding PC Sessions

LDPC
Encoder

Modulator
2− PAM

AWGN
Channel

Soft
Demodulator

LDPC
Decoder

BER
Meter

BER
Meter

inf enc mod rec encRX infRX

Figure 30: Block Diagram of LDPC Encoding scheme.

Since the Encoder is systematic, it propagates the k information bits and appends the computed (n − k)

parity check bits by applying the back substitution technique.

The technique provides a simple linear encoding procedure that can be applied to lower triangular parity-

check matrices.

Each parity check bit is computed sequentially as linear combination of information bits and parity check

bits computed at the previous steps.

The back substitution applied to the matrix H is the following:

c1

c2

c3

c4

c5


=



x1

x2

x1 + x2

x2 + c3

x1 + c3


=



x1

x2

x1 + x2

x2 + x1 + x2

x1 + x1 + x2


(15)

As we can see, we have to compute the value of c3 in order to compute the values of c4 and c5.

The advantage of using the back substitution is reducing the complexity from O(N2) using the standard

matrix product to O(N).

LDPC Implementation

The code that implements the encoding technique is the following:

h=Hconn;
2 for(i=0;i<K;i++)out[i]=inp[i];

for(;i<N;i++)
4 {

temp=0;
6 for(j=1;j<ncheck;j++)

{
8 if(h[j]==-1)break;

temp ˆ= out[h[j-1]];
10 }

out[h[j-1]]=temp;
12 h+=ncheck;

}
14 break;

The output codewords are sent over an AWGN Channel and the Soft Demodulator provides LLRs on the

coded bits, wich are used by the LDPC Decoder to decode the information bit sequences.

The Decoding rule is based on belief propagation algorithm between the variable and check nodes that

exchange messages. The algorithm can be described graphically by constructing the Tanner Graph associated

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 32 of 37

Advanced Coding PC Sessions

v1

v2

vn

c1

c2

cn−k

v
a
r i

ab
le

n
o d

e s ch
eck

n
od

es

variable node sockets check node sockets

Permutation

Π

Figure 31: Tanner Graph.

to the H. In Figure 31 is reported a Tanner Graph for a generic LDPC, where {v1, ..., vn} are the variable

nodes and {c1, · · · , cn−k} are the check nodes.

The number of edges connected to a variable node vi is the degree of the variable node dvi , whereas the

number of edges connected to a check node ci is the degree of the check node dci . At the nth iteration of the

algorithm, the generic message sent by a variable node vi to a check node cj is denoted by α
(n)
ij , whereas the

message sent by a check node cj to a variable node vi is denoted by β
(n)
ji and they are stored into relative

buffers called sockets.

Adopting the belief propagation algorithm, α
(n+1)
ij is computed as:

α
(n+1)
ij = λi +

dvi∑
l=1,l 6=j

β
(n)
li (16)

While the computation of β
(n+1)
ji can be done in two different ways: the Sum-Prod and the Min-Sum. The

first is optimal in terms of correction capability while the second is sub-optimal but it is less complex in

terms of computation.

Sum-Prod - The Sum-Prod updating rule for β
(n)
ji is the following:

β
(n+1)
ji = 2 · arctanh

 dcj∏
l=1,l 6=i

tanh

(
α
(n)
lj

2

) (17)

The previous equation is equivalent to the g(·) operator defined as:

g(a, b) =
∗

max (a, b)− ∗
max (a+ b, 0) (18)

whose block diagram is reported in Figure 32.

Min-Sum - The Min-Sum updating rule for β
(n)
ji is the following:

β
(n+1)
ji = −

dcj∏
l=1,l 6=i

sign
(
−α(n)

lj

)
·

dcj

min
l=1,l 6=i

(
|α(n)
lj |
)

(19)

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 33 of 37

Advanced Coding PC Sessions

which is based on the following approximation of g(·) operator:

g(a, b) ' sign(a · b) ·min(|a|, |b|) (20)

LUT

LUT

| · |

| · |

+

+

×

+

× +

|a|

|b| − ||a| − |b||

||a|+ |b||

min(|a|, |b|)

sgn(a)

sgn(b)

sgn(a)sgn(b)

Figure 32: g(·) operator logical scheme.

In order to reduce the performance loss of Min-Sum with respect to Sum-Prod, it is applied the Min-Sum-

Offset (γ):

β
(n+1)
ji = −

dcj∏
l=1,l 6=i

sign
(
−α(n)

lj

)
·max

([
dcj

min
l=1,l 6=i

(
|α(n)
lj |
)
− γ
]
, 0

)
(21)

Based on the substitution:

min(|a|, |b|)→ max(min(|a|, |b|)− γ, 0) =

{
0 if min(|a|, |b|) < γ

min(|a|, |b|)− γ if min(|a|, |b|) ≥ γ
(22)

The belief propagation algorithm works as follows:

- At the first step, the check nodes’ sockets α
(0)
ij are initialized to a priori LLRs on coded bits coming

from the soft demodulator.

- At each step n,

· the variable nodes’ sockets β
(n)
ji , are obtained either from optimal (17) or suboptimal (21) com-

putation.

· the check nodes’ sockets α
(n)
ij are updated according to (16).

- At the end of the iterations, a posteriori LLRs are computed.

Once the a posteriori LLRs are available, hard decision is performed.

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 34 of 37

Advanced Coding PC Sessions

Results Discussion

We simulate the LDPC encoding and analysed the performances by using DVB-S2 Standard.

The Block sizes provided are: short (N = 4096), medium (N = 16200), long (N = 64800).

The possible rates used in DVBS-2 are r = [1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 8/9, 9/10].

In Figure 33 we plot the BER curves (33a) and the FER curves (33b) using the rates 1/4 and 8/9, with

medium block size. We compare the performances of optimal Sum-Prod with respect to Min-Sum with offset

γ = 3. As we expect, using a higher value of rate (r = 8/9) does not provide many improvements due to

the few amount of added redundancy. Using more redundant codes, r = 1/4, we reach an high coding gain.

As previously said, using the Min-Sum introduces a loss with respect to the optimal values obtained with

Sum-Prod. The loss is roughly 0.5 dB for low Eb/N0 and it decreases for high Eb/N0 since the approximation

of tanh(·) with the sign(·) function is better.

Then we analyse the relationship between the BER and Offset values using Min-Sum-Offset (γ), with rate

r = 1/2 and short block size.

As we can see in Figure 34, increasing the value of γ, performances improve until we reach an optimal value

γ = 4, then they get worse for higher values.

The optimal value of γ depends on the adopted rate r. For the Optimal value of γ the loss with respect to

the Sum-Prod algorithm is roughly 0.1 dB.

Finally, we analyse the performances for the 3 different block length sizes, using the Min-Sum with the

optimal value γ = 4.

In Figure 35 we can see that when the block size is larger, the performances are better. We can notice that

the medium length curve crosses the long and the Sum-Prod ones, due to the fact that the DVB-S2 uses a

slightly lower rate for this block size (r = 0.44 instead of r = 0.5).

However, for high Eb/N0, the long length curve shows a better performance of the medium length one.

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 35 of 37

Advanced Coding PC Sessions

Eb

N0
[dB]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

B
E
R

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Uncoded

r=8/9 Min-Sum

r=8/9 Sum-Prod

r=1/4 Min-Sum

r=1/4 Sum-Prod

(a) Min-Sum and Sum-Prod BER Curves.

Eb

N0
[dB]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

F
E
R

10
-4

10
-3

10
-2

10
-1

10
0

r=8/9 Min-Sum

r=8/9 Sum-Prod

r=1/4 Min-Sum

r=1/4 Sum-Prod

(b) Min-Sum and Sum-Prod FER Curves.

Figure 33: Comparison between Min-Sum and Sum-Prod LDPC Performances

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 36 of 37

Advanced Coding PC Sessions

Eb

N0
[dB]

0 0.5 1 1.5 2 2.5

B
E
R

10
-3

10
-2

10
-1

γ=0

γ=1

γ=2

γ=3

γ=4

γ=5

γ=6

γ=7

γ=8

Sum-Prod

Figure 34: BER Curves of LDPC with r = 1/2, short block size, Min-Sum-Offset with γ = [0, 8].

Eb

N0
[dB]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

B
E
R

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

short

medium

long

Sum-Prod long

Figure 35: BER Curves of LDPC with r = 1/2: short, medium, long block size.

Rotondo Massimiliano, Ferro Demetrio, Minetto Alex Page 37 of 37

	PC Session 1: BER Counter
	Purpose
	Problem Statement
	Available software
	System Description
	Results Discussion
	BER Meter Class Implementation

	PC Session 2: Limits of Coding
	Purpose
	Problem Statement
	Available (new) software
	System Description
	Constrained Signal Set Analysis
	Finite Block Length Analysis

	PC Session 3: SISO Decoder
	Purpose
	Problem Statement
	Available (new) software
	System Description
	SISO Implementation
	Results Discussion

	PC Session 4: PCCC Decoder
	Purpose
	Problem Statement
	Available (new) software
	System Description
	PCCC Decoder Implementation
	Results Discussion

	PC Session 5: LDPC Decoder
	Purpose
	Problem Statement
	Available (new) software
	System Description
	LDPC Implementation
	Results Discussion

