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Abstract Results

The study of neural circuitry in visually-guided decision-making has inspired models A Decision populations: firing rates B Gaze populations: firing rates

of decision formation. However, the role of gaze in enabling focal sampling and shifts
to alternative options remains unclear. We propose a closed-loop model integrating
gaze signals with decision dynamics for optimized visual sampling. Visual input acti-
vates decision populations, competing via mutual inhibition. Their output drives gaze
populations, producing visual shifts that feed back into the decision process. Simu-
lations on a two-alternative bundle task show that gaze and choice behavior align
in terms of accuracy and gaze shift frequency. The model predicts, for example, that
fewer gaze shifts correlate with shorter reaction times, and that shifts may coincide with
changes in neural value encoding. It can also be extended to sequential choices or
contexts with distractors, where gaze is an important value reactivation correlate [1].
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Figure 1. Model diagram and simulation results. A. Model diagram outline. B. Probability of choosing
right (top) and fraction of time directing gaze to right side (bottom) for pairs of bundle values (bvg, buy,).
Parameters used: dt = 0.1 ms; 7 = 100 ms; 7@ = 30 ms; w!') wl) = 0.05; w!), W) = —1; w?), W) =

0.5: w2 w? = —2:a® = 1:a® = 0.1; 04y = 5; 079 = 0.08: 7c = 1000 ms; by = 0:b; = 1: n = 100 runs.
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Figure 2. Firing rates and predicted behavioral outputs. Firing rate of the L/R Decision populations (A.)
and L/R Gaze populations (B.) for a sample configuration (bv;, = 4,bvg = 5). Gaze bias signals (C.) and
Gaze direction (D.) for the same buvy,, bug configuration, including moving mean filtered versions (dotted,
movmean). Predicted psychometrics for different bundle value differences: probability of right bundle
choice and logistic fit (E.), fraction of time looking at best option and sigmoidal function fit (F.), average
occurrence of gaze shifts between the two bundles sides (G.) and of gaze shifts towards best/worst option
(H.), with dotted lines showing comparison with gaze shifts from empirical data by Huang et al. [2].

Further details and future directions

The interaction between decision formation and gaze direction is modeled by hypoth-
esizing mutual inhibition between the respective (1, decision; 2, gaze) population pairs
(each containing L, left or R, right units). The bundle shapes (sk.r, sk.r, k = 1,2,3) are
visually sampled by multiplication to gaze bias signals (br(t), br(t)). The left or right
bundle sampling is fed to the respective decision populations through scaling fac-

tors (ag),ag)), implementing choice formation. The output of decision populations

is combined through scaling factors (a(LQ), ag)) to gaze populations implementing at-
tractor networks with perceptual bistability, allowing alternations induced by noise
fluctuations [3]. The gaze bias signals (b (t), br(t)) are fed back to the visual sampling.
The two L/R firing rates pairs (T(Li)(t),rg)(t),i = 1,2) are modeled as
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and steady-state distribution ~ N(0, 7%, /(27)).

We used RelLU for decision populations, modeling thresholded accumulation, and tanh
for gaze populations, following general practice respectively from evidence accumu-
lation and bistable switching neural dynamic models. We define feedback gaze bias:
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bL(t) = by + by bR(t) = by + by
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The two-alternative bundles decision-making task. The two-alternative bundles task
[2] consists in the simultaneous presentation of two visual bundles, each containing 3
items disposed vertically on the left or the right of the screen. The items are associated
with rewards whose value ranges from O to 5. The value of bundles is given by the sum
of item values. Decisions are reported via gaze fixation to the target bundle for at least
0.4 s. Choices are correct if the highest value bundle is selected, rewarded with liquid
of size proportional to the bundle value. Incorrect choices incur a 3 s time-out penalty.

Gaze and Decision output. The simulated choice is sampled at 7' = 1 s: choose R if
rg)(T) > rg)(T), choose L otherwise. This does not preclude making more detailed
assumptions about choice deliberation that may occur earlier, eventually indicated via
gaze fixation. We apply a moving mean filter (movmean) on gaze bias signals using boxcar
time windows with duration 100 ms and shifted at each 10 ms offsets. The gaze direction
output is determined as: Look R if movmean(bg(t)) >movmean(by(t)), Look L otherwise.

Choice probability and looking times. The fraction of choices for the right bundle (Fig.
2E) is computed in discrete bins of bundle value difference, and overlaid to the logistic fit
of trial-based data, modeling P(ch = R) = 1/(1 + e~ fo=filbvr=bvr)y The average fraction
of time looking at best bundle (Fig. 2F is binned by absolute bundle value difference.
Trial-based data are fit to Fy.y = ag + a1/(1 + e~ o~ Ailbvr=becly - Gaze shifts (Fig. 2G-H)
are defined as discrete-time discontinuities in Look L / Look R, computed in 10 ms bins.

Future directions. The results shown here qualitatively align with behavioral patterns re-
ported by Huang et al. (2024), though direct overlays are shown only for gaze shifts (Fig.
1H) due to partial data availability. At the current stage, other panels could are qualita-
tively compared against the same dataset. Beyond this, the model supports testable pre-
dictions about gaze-choice interactions, e.g., whether fewer gaze shifts lead to shorter
reaction times, or if gaze shifts coincide with neural encoding alternations, or bidirec-
tional effects such as decision-related gaze bias[1]. The model can be extended to
explore gaze-decision dynamics across more complex paradigms and neural structures
such as LIP or FEF involved in oculomotor planning and value encoding.
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