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Abstract
Probabilistic decision-making is influenced by many sub-
jective factors, including reward seeking, risk accep-
tance, and satisfaction. A significant aspect, often over-
looked in trial-based reward paradigms, is reference-
point bias, consisting in the assessment of potential
gains and losses based on a relative reference point,
based on current wealth status (Kahneman & Tversky,
1979). To address this gap, we set incremental reference
points through the accumulation of virtual tokens lead-
ing to a fluid jackpot reward, and established their im-
pact on behavioral performance and neural encoding in
the dorsal anterior cingulate cortex (dACC) of macaque
monkeys. As subjects accumulated more and more to-
kens, the trial execution approached the jackpot achieve-
ment. For higher accumulated tokens subjects exhibited
faster and more accurate choices, indicating reference
point-dependent behavior. Neuronal activity in the dACC
corresponded with reward value during the visual presen-
tation of offer cues, with enhanced encoding for higher
ranges of accumulated tokens. Additionally, in easier tri-
als where more valuable options were more salient, both
decision-making speed and the neural representation of
reward value were enhanced. These findings underscore
the critical role of the dACC in integrating reward accumu-
lation and decision-making processes, reflecting biases
associated with reference point dependence.
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Introduction
Decision-making under risk involves evaluating potential gains
and losses, thus predicting possible outcomes relative to time-
dependent references (Kahneman & Tversky, 1979). Al-
though the neural processes of risk and probability over de-
cisions are better understood, the neural basis of reference
dependence remains unexplored. A viable approach to study-
ing such phenomena across trials is to consider the cumula-
tion of virtual rewards as a time-varying reference for decision-
making. While previous research has explored the influence

of behavioral history on decisions (Braun, Urai, & Donner,
2018; Nogueira et al., 2017; Mochol, Kiani, & Moreno-Bote,
2021; Hermoso-Mendizabal et al., 2020), it has often relied
on choice paradigms with immediate, trial-based rewards.

Token-based tasks enable the tracking of cumulative deci-
sions, where choices lead to token accumulation, ultimately
leading to the achievement of a jackpot reward (Maisson et
al., 2021; Strait et al., 2016; Azab & Hayden, 2017, 2018;
Farashahi, Azab, Hayden, & Soltani, 2018). These tasks offer
insights into how reward probability, task difficulty, as well as
token accumulation and jackpot proximity influence decisions
and neural mechanisms at varying reference points. Here,
we hypothesize that token count functions as a dynamic refer-
ence point and that its influence on value-based decisions is
reflected in dACC neural activity.

Advances in neurophysiology have identified the dorsal An-
terior Cingulate Cortex (dACC) as a key region involved in
reward anticipation and cognitive effort estimation (Vassena,
Holroyd, & Alexander, 2017; Aarts & Roelofs, 2011), as well
as delayed reward processing (Strait et al., 2016; Azab & Hay-
den, 2017, 2018; Farashahi et al., 2018; Vassena, Deraeve,
& Alexander, 2020; Blanchard & Hayden, 2014). Neural ac-
tivity in this area has been associated with multi-trial (Shidara
& Richmond, 2002) and virtual reward expectation (Hayden,
Pearson, & Platt, 2009), impacting behavior (Kerns et al.,
2004; Hayden, Heilbronner, Pearson, & Platt, 2011).

Methods
The token-based decision-making task. The task starts
with the sequential presentation of two alternative offers on
the opposite sides of the screen (Fig. 1A). Each presenta-
tion lasts 600 ms, followed by a 150 ms delay. Thereafter, the
subjects are instructed to reacquire fixation, and to perform
the choice via a choice-go cue consisting of both offers pre-
sentation. The choice is performed by directing the gaze to
target option and holding fixation for at least 200 ms. Fixation
breaks allow for changes of mind, by subsequent fixation of
the alternative offer. The visual cues were split in two parts
where the height bottom part indicated the success probabil-
ity pb of the offer and the height of the top part was comple-
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Figure 1: Behavioral task, performances, and value encoding. A. Behavioral task outline. B. Choice accuracy (left) and
execution time (right, mean ± sem) for previous trial outcomes (No J.= no jackpot, J.=jackpot), and ATC at the start of the trial
(S: ATC= 0,1, M: ATC= 2,3, L: ATC= 4,5). C. Same as B, but for the fraction of risky choices in Hard (left, ∆EV < 1) and Easy
(right, ∆EV ≥ 1) trials. D. Fractions of cells (mean ± sem) with significant encoding of SV1 (left) and SV2 (right) (Low: ATC<2,
High: ATC≥2). Data combined for the two subjects (n = 55 cells in subject 1, n = 74 cells in subject 2). Dotted lines: 95th
percentile of same fractions for trial-order shuffles. One-tailed Wilcoxon signed rank tests are used to assess that fractions are
higher in High ATC than in Low ATC (∗p < 0.05, ∗∗p < 0.01, FDR corrected). E Same as D, but for Easy (∆SV ≥ 1.9) and Hard
(∆SV < 1.9). One-tailed Wilcoxon signed-rank tests are used to assess that fractions were higher in Easy than in Hard trials.

mentary (pt = 1− pb) to it. The color of the visual cues indi-
cated the magnitude m of the probabilistic offers in (positive or
negative) tokens (mb,mt = [−2,−1,0,1,2,3]). First offer pre-
sentation sides, as well as reward magnitude and probability
were randomized across trials. The accumulated token count
(ATC) was displayed at the bottom of the screen. Each trial
ended with a small fluid reward (0.1 mL). When the counter
hit ATC= 6, a large jackpot reward (0.3 mL) was provided.

The data includes n= 227 behavioral sessions in 2 subjects
(subject 1: 109 sessions, 433.28 average trials/session; sub-
ject 2: 118 sessions, 500.68 trials/session), n = 108 sessions
(subject 1: 65 sessions, 479.16 trials/session; subject 2: 43
sessions, 519.35 trials/session) include extracellular activity of
dACC (Area 24) recorded using single contact electrodes.

Analysis of behavior We computed the fraction of correct
choices as the proportion of trials where subjects chose the
offer with best expected value, defined as EV = mt pt +mb pb.
The execution time is measured from the start of the trial, up
to choice report. The fraction of risky choices is computed by
defining risk R= pt(mt −EV )2+ pb(mb−EV )2. The analysis
is split for Easy and Hard trials by the median of the variable
∆EV = |EV1 −EV2|, in our data settings median(∆EV ) = 1.

Neural encoding of value We computed the fraction of
n = 129 cells (subject 1: n = 55, subject 2: n = 74) encoding
the subjective value of the offers by linear regression (Ferro,
Cash-Padgett, Wang, Hayden, & Moreno-Bote, 2024). We de-
fined the subjective value as SVi = α1,iEVi +α2,iRi, i = 1,2,
whose weights are computed by fitting a logistic model of the

choice: logit(ch) = α0 +∑i=1,2 α1,iEVi +α2,iRi. The spike
count ηk,t at time bin t in trial k is computed in 200 ms pe-
riods with 10 ms offset shifts. The fractions of cells show-
ing significant encoding are computed via the linear regres-
sion ηk,t = β0,t +β1,tSV1,k +β2,tSV2,k, thus via comparison of
empirical β1,t or β2,t to null F-distributions. The fractions of
significant cells at time bin t are averaged within trial epochs
(offer1, delay1, offer2, delay2). The results are further as-
sessed via permutation tests, building the null distribution via
trial-order shuffled data. The analysis is applied to all trials,
and by conditioning on ATC or difficulty. We set ATC ranges
to Low (ATC<2) and High (ATC≥2), and difficulty based on
median(∆SV ) = 1.9,∆SV = |SV1 − SV2|, as Easy (∆SV ≥ 1.9)
and Hard (∆SV < 1.9). While in the last case we achieved
equally sized splits, in the first case the conditions are slightly
unbalanced, with Low ATC in 45.18% of the total trials, and
Hight ATC in 54.82%. We achieved even sizing by randomly
resampling n = 10 times trials in High ATC in equal size as for
Low ATC, and averaged the resulting fractions of cells.

Results
Our findings indicate that subjects consider multiple factors,
such as token count, risk and expected value, in their decision-
making, extending beyond previous results. The subjects cor-
rectly reported the offer with best expected value, with more
pronounced accuracy (Fig. 1B, left) and speed (Fig. 1B, right)
when they accumulated a higher amount of tokens, i.e., as
they got closer to the possibility of jackpot achievement. Sub-
ject 1 was generally more accurate, though slower than sub-



ject 2. The two subjects both showed a risk-seeking attitude,
choosing the most risky option more often when the evidence
for best EV contingency was Hard (Fig. 1C, left), compared
to when it was Easy (Fig. 1C, right). In both cases, subject 2
showed a higher propensity for risk compared to subject 1, re-
gardless of the previous trial outcome (be it jackpot or no jack-
pot), and most pronounced when ATC was lower (ATC≤ 3).

By investigating the role of dACC spiking activity, we found
that the neural encoding of the subjective value of the respec-
tive offer is most pronounced during its presentation phase,
i.e., we observed higher fractions encoding SV1 during offer 1
presentation, and SV2 during offer 2, reflecting temporal align-
ment of neural signals (Fig. 1D,E, all trials, left vs. right).
More critically, encoding strength increased with higher token
accumulation, suggesting that dACC activity reflects subjec-
tive value relative to a dynamic internal reference point (Fig.
1D,E). By stratifying the analysis by ATC levels (Fig. 1D) and
difficulty (Fig. 1E), we found that neural encoding is signifi-
cantly enhanced as more tokens are accumulated, and in tri-
als where best offer contingency detection is easier.
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