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Abstract

Probabilistic decision-making is shaped by various subjective factors such as reward

seeking, risk acceptance, and satisfaction. One key but often overlooked compo-

nent is reference-point bias—the evaluation of gains and losses relative to a shifting

internal baseline tied to current wealth status [2]. To examine this, we introduced in-

cremental reference points via the accumulation of virtual tokens leading to a fluid

jackpot reward, and investigated their impact on behavior and neural encoding in

the dorsal anterior cingulate cortex (dACC) of macaque monkeys. As tokens accu-

mulated, trials neared jackpot completion. With higher token counts, monkeys made

faster and more accurate choices, demonstrating reference point-dependent behav-

ior. The dACC activity tracked reward value during offer presentation, with stronger

encoding at higher token levels. In easier trials, where high-value options were clearer,

both decision speed and reward encoding increased. These results highlight the role

of dACC in reward accumulation and reference-dependent biases in decision-making.
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Figure 1. A. Token-based decision-making task. Two offers are sequentially presented (offer 1-2, 600

ms), interleaved by delays (delay 1-2, 150 ms). Subsequently, subjects re-acquire fixation to the center

(re-fixate) for 100+ ms, and upon choice-go cue, they report the choice via gaze fixation for at least 200

ms (choice). A small fluid reward (100 μL) is provided in all trials. The accumulated tokens count (ATC)

is displayed as initially unfilled circles, filled by tokens as they are collected. At 6 tokens count, subjects

receive a “jackpot” reward (300 μL), and the count is reset. The height of the bar stimuli is informative

of probability, and the color is informative of the magnitude. The probabilities color-cued by the height

of top and bottom parts of the stimuli are drawn from binned uniform probability [10%, 30%, 50%, 70%,

90%]. The magnitudes included negative or positive virtual tokens [-2,-1,0,+1,+2,+3]. We included safe

options where 0 or 1 tokens are achieved with 100% probability. B. Recording sites covering the dACC.

Reference-dependent value

Expected value Risk

EV = vtpt + vbpb = vtpt + vb(1 − pt) R = (vt − EV )2pt + (vb − EV )2(1 − pt)

Utility Function

u(v, ATC) =
{

[v − r(ATC)]γ(ATC) v ≥ r(ATC) (gains)

−λ(ATC)[v − r(ATC)]γ(ATC) v < r(ATC) (losses)
,

r(ATC) = 6 − ATC

1 + e−κ0(ATC−κ1) , λ(ATC) = λ0 + λ1ATC + λ2ATC2, γ(ATC) = γ0 + γ1ATC

Behavioral analyses
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Figure 2. A. Probability of correct choice. Choices for the option with best EV (mean ± s.e.m.) for binned

values of JPT (Jackpot on Previous Trial) and ATC (Accumulated Tokens Count) in the two subjects. B.

Trial Execution time. Choice execution time (mean ± s.e.m.) from trial start to choice report, for JPT
and ATC bins in the two subjects. C-D. Logistic weights of EV and R. The choice is regressed as

logit(ch = 1) = β0 + β1(EV1 − EV2) + β2(R1 − R2) to compute β1 (C) and β2 (D) for JPT and ATC bins

in the two subjects. Easy: ∆EV ≥median(∆EV ), Hard: ∆EV <median(∆EV ), where ∆EV = |EV1 − EV2|.

Neural analyses
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Figure 3. A. Neural encoding of reference-dependent SV s. Fractions of cells significantly encoding SV1,
SV2 for gains/losses, with 95th percentile from shuffled data as baseline (dotted line). B. Epoch-averaged

fractions. Mean± s.e.m. of significant fractions across task epochs. One-tailed signed-rank tests compare

to shuffled baseline or gains vs. losses (*p<0.05, **p<0.01, ***p<0.001). C. Exclusive vs. simultaneous

encoding. Epoch-averaged fractions of cells encoding only one or both SV s; bold indicates significance

above shuffled control. D. Neural encoding and behavioral readout. Correlations between spike-rate

model weights (β′
1–β′

4) and AUCs for choice prediction (subjects combined, n=129; ***p<0.001).

Neural encoding and behavioral readout

The Subjective Value is defined for gains (SV +) and losses (SV −)

SV + = β0 + β1EU+ + β2V U+,
SV − = β0 + β1EU− + β2V U−,
EU+ = E[u(vt, ATC)]|u(vt,ATC)≥r(ATC) + E[u(vb, ATC)]|u(vb,ATC)≥r(ATC),

V U+ = V AR[u(vt, ATC)]|u(vt,ATC)≥r(ATC) + V AR[u(vb, ATC)]|u(vb,ATC)≥r(ATC),

EU− = E[u(vt, ATC)]|u(vt,ATC)<r(ATC) + E[u(vb, ATC)]|u(vb,ATC)<r(ATC),

V U− = V AR[u(vt, ATC)]|u(vt,ATC)<r(ATC) + V AR[u(vb, ATC)]|u(vb,ATC)<r(ATC).

The moving-average spike-rate ηk(t) for the kth cell at each 20 ms bin t is fit to

ηk(t) = β+
0 (t) + β+

1 (t)SV +
1 + β+

2 (t)SV +
2 ηk(t) = β−

0 (t) + β−
1 (t)SV −

1 + β−
2 (t)SV −

2

to extract the fraction of cells significantly encoding each of the SV variables.

The Area Under the Curve (AUC) is computed by predicting choices on the product of

time-average 〈β(t)′〉 estimated on train data as ηk(t) = β′
0(t) + β′

1(t)(EU+
1 − EU+

2 ) +
β′

2(t)(EU−
1 − EU−

2 ) + β′
3(t)(V U+

1 − V U+
2 ) + β′

4(t)(V U−
1 − V U−

2 ) and EU, V U variables

from test data. Pearson’s correlation is computed between cell-wise AUC and 〈β′(t)〉.

Results

We found that subjects made token-based decisions using a reference-dependent strat-

egy, where the number of accumulated tokens acted as a dynamic reference point.

When jackpot attainment was possible, choices reflected a goal-directed comparison

to the remaining tokens needed. When the jackpotwas unattainable, choiceswere made

by selecting the option yielding the highest expected token amount. Closer proximity

to the jackpot led to improved performance, marked by higher accuracy and faster re-

sponses. At the neural level, gains relative to the reference were linked to a higher

fraction of value-encoding neurons, whose tuning correlated more strongly with be-

havioral readout analyzing choice prediction AUC and spike-rate model weights.
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