

Is your gaze your aim? Eye position in reward gambling and the role of orbito-frontal cortex in encoding the value of visually cued offers

Demetrio Ferro ${ }^{1,2, \star}$, Anna Rifé Mata ${ }^{1,2}$, Tyler Cash-Padgett ${ }^{3}$, Maya Zhe Wang ${ }^{3}$, Benjamin Hayden ${ }^{3}$, Rubén Moreno Bote ${ }^{1,2}$
${ }^{1}$ Center for Brain and Cognition (CBC), Universitat Pompeu Fabra (UPF), 08002, Barcelona - ES;
${ }^{2}$ Department of Information and Communication Technologies, Universitat Pompeu Fabra (UPF), 08002, Barcelona - ES;
${ }^{3}$ Dept. of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroeng., University of Minnesota, MN55455, Minneapolis - USA;
*demetrio.ferro@upf.edu

Reward gambling task

Fixate

acquire fixation at center of the screen

Reward gambling task

Offer 1

first offer is presented

Reward gambling task

Offer 1

Reward gambling task

blank screen

Reward gambling task

Offer 2

Reward gambling task

Delay 2

blank screen

Reward gambling task

Re-fixate

re-acquire fixation at center of the screen

Reward gambling task

Choice-go

saccade to chosen offer side

Reward gambling task

Choice-made

hold chosen offer side for at least +200 ms

Reward gambling task

Feedback

chosen offer is resolved: reward / no reward

Reward gambling task

Reward

reward is provided

Motivations

- Is the gaze position relevant for the reward gambling task execution?
- Can we use the gaze position as a marker of what is the animal mentally picturing during task execution in, particular during delay times?

Eye movements during task execution

Eye movements during task execution

Eye movements during task execution

delay 1

Eye movements during task execution

Eye movements during task execution

Trials pooled with first offer re-referenced to Left side.

Eye movements during task execution

Eye movements during task execution

choice go
$1^{\circ} \mathrm{L}^{\circ}$

Trials pooled with first offer re-referenced to Left side.

Generalized Linear Model (GLM) for behavioral choice

Neural Data

Carmichael, S.T., and Price, J.L. (1994). Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey. J. Comp. Neurol.346,366-402.

Subject 1

area	session	\#cells	\# trials
BA13	$12 / 07 / 17$	51	643
BA13	$12 / 08 / 17$	59	700
BA11	$12 / 09 / 17$	24	697
BA11	12/10/17	29	603
	Total	163	2643

Subject 2

area	session	\#cells	\# trials
BA11	$3 / 06 / 19$	18	1015
BA11	$3 / 07 / 19$	32	323
BA11	$3 / 08 / 19$	9	1084
BA11	$3 / 11 / 19$	26	906
	total	85	3328

- 2 Subjects
- 8 Sessions
- 248 Cells

Data acquisition

Tyler Cash-Padgett, Maya Zhe Wang, Benjamin Hayden, Hayden Lab, Dept. of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, University of Minnesota, Minneapolis, USA;

Two adult male rhesus macaques (macaca mulatta) served as experimental subjects. All procedures were approved by the University Committee on Animal Resources at the University of Rochester and at the University of Minnesota, conducted in compliance with the Public Health Service's Guide for the Care and Use of the Animals.

Motivations

- Are task-relevant variables encoded by OFC cells?
- Is the gaze position relevant in the neural process of encoding the offer values?

GLM for OFC spiking activity

Hypothesis:
Focusing on the Left offer EV, $\mathrm{E}(\mathrm{L})$
if the monkey looks at Left/Right side, is the $\mathbf{E}(\mathbf{L})$ coding in OFC affected?

delay 2

Test:
Consider trials where monkey mostly

- LookL: tR/(tR+tL)<0.5
- LookR: tR/(tR+tL)>0.5
- GLM for $\mathrm{E}(\mathrm{L}):$ Look Left $\eta \approx \operatorname{Poiss}\left(f^{-1}\left(\beta_{0, L}+\beta_{L} \cdot \mathbf{E}(\mathbf{L})\right)\right)$
- GLM for $\mathrm{E}(\mathrm{L}):$ Look Right $\eta \approx \operatorname{Poiss}\left(f^{-1}\left(\beta_{0, R}+\boldsymbol{\beta}_{R} \cdot \mathbf{E}(\mathbf{L})\right)\right)$
$\boldsymbol{\beta}_{L}$ vs $\boldsymbol{\beta}_{R}$? ?

choice
LookL LookR

GLM for $\mathbf{E}(\mathbf{R})$:
LookL vs LookR

Conclusions

- The gaze position has a significant role in the reward gambling task execution: the fraction of time spent at either screen side is predictive of the chosen side;

- Task-relevant variables are encoded by a significant fraction of OFC cells, including the fraction of time spent inspecting either screen side;

- The gaze position is relevant in the process of encoding offer values: looking at either side possibly yields stronger coding of the ipsi-later offer EV.

upf.
Universitat
Pompeu Fabra
Barcelona

TCN upf.edu/web/tcn
Research Group on Theoretical and Cognitive Neuroscience

TCN Lab

Rubén Moreno Bote Anna Rifé Mata Alice Vidal Jorge Ramirez Ruiz Chiara Mastrogiuseppe Carolina Schneider Bender
Devin Ozbağcı
Dmytro Grytskyy Farhad Razi
Sofia Lawrie
Alireza Valyan
Francesco Damiani
Fatma Aboalasaad

Collaborators

Benjamin Hayden, Tyler Cash-Padgett, Maya Zhe-Wang,

Hayden Lab, haydenlab.com University of Minnesota,
Dept. Neuroengineering, Minneapolis, USA.

Fundings

$\frac{\text { Howard Hughes }}{\text { Hes }}$
Howard Hughes
Medical Institute

> See you at at the Poster Session 4 Friday 05 Nov 21 - 9AM, 12:30PM Posters: \#PS4-50

Thank you for your attention.

Eye Data

Eye movements during task execution

\Rightarrow Subject is inspecting the CURRENT offer (on screen)
\Rightarrow Subject is not interested in CURRENT offer (on screen) since it is not the best
\Rightarrow Subject drifts the gaze to NEXT offer location (blank screen) for a better value
\Rightarrow Subject drifts the gaze back to PREVIOUS location (blank screen) for a better value
\Rightarrow Subject correctly holds the gaze to choose the BEST offer

Eye Data

Two-dimensional distribution of eye position during task execution
Left EV > Right EV

Experimental paradigm

Reward gambling task

Orbito-Frontal Cortex (OFC)

Data acquisition

Tyler Cash-Padgett, Maya Zhe Wang, Benjamin Hayden, Hayden Lab, Dept. of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, University of Minnesota, Minneapolis, USA;

Two adult male rhesus macaques (macaca mulatta) served as experimental subjects. All procedures were approved by the University Committee on Animal Resources at the University of Rochester and at the University of Minnesota, conducted in compliance with the Public Health Service's Guide for the Care and Use of the Animals.

Eye Data

GLM for neural spiking activity

x_{1}, w_{1}, Left offer EV
x_{2}, w_{2}, Right offer EV
x_{3}, w_{3}, Left offer VAR
x_{4}, w_{4}, Right offer VAR
x_{5}, w_{5}, order 1 st $L=1$
$x_{6}, w_{6}, t R /(t R+t L)$

- n.s. $\bullet \bullet \bullet$ • $P<0.05$

GLM for neural spiking activity

x_{1}, w_{1}, Left offer EV
x_{2}, w_{2}, Right offer EV
x_{3}, w_{3}, Left offer VAR
x_{4}, w_{4}, Right offer VAR
x_{5}, w_{5}, order 1 st $L=1$
$x_{6}, w_{6}, t R /(t R+t L)$

- n.s. $\bullet \bullet \bullet \bullet P<0.05$
time bins (1 ms) 400

GLM for neural spiking activity

x_{1}, w_{1}, Left offer EV
x_{2}, w_{2}, Right offer EV
x_{3}, w_{3}, Left offer VAR x_{4}, w_{4}, Right offer VAR
x_{5}, w_{5}, order $1 s t L=1$
$x_{6}, w_{6}, t R /(t R+t L)$

- n.s. \bullet • • • $P<0.05$

LookL LookR
choice

LookL LookR

GLM for $\mathbf{E}(\mathbf{L})$: LookL vs LookR

GLM for $\mathbf{E}(\mathbf{R})$:
LookL vs LookR

GLM for
$\mathrm{E}(\mathrm{R})-\mathrm{E}(\mathrm{L})$:
LookL vs LookR

choice

LookL LookR

GLM for $\mathbf{E}(\mathbf{L})$: LookL vs LookR

GLM for $\mathbf{E}(\mathbf{R})$:
LookL vs LookR

GLM for

$\mathrm{E}(\mathrm{R})-\mathrm{E}(\mathrm{L})$:
LookL vs LookR

Significant β_{L}
-
OfferLev lookL
OfferLev lookR
Preoffer β_{L}
Significant β_{R}
Signif. \& n.s. β_{R}
$\left(\beta_{L}-\beta_{R}\right)$ for signif. $\beta_{L} \&$ signif. β_{R}
$\left(\beta_{L}-\beta_{R}\right)$ for signif. \& n.s. β_{L}, β_{R}
$\begin{array}{lccc}\text { Preoffer1 } & \text { Offer1 } & \text { Delay1 } & \text { Offer2 } \\ 44 / 248^{* * *} & 47 / 248^{* * *} & 73 / 248(\%)^{* * *} & 42 / 248^{* * *}\end{array}$
Delay2 Re-fixate $27 / 248^{* * *}$

33/248***
$45 / 248(\%)^{* * *} \quad 38 / 248^{* * *}$
$43 / 248(\%)^{* * *}$
16/248

Significant β_{L}
$\begin{array}{lc}\text { Preoffer1 Offer1 } & \text { Delay1 }\end{array}$
$\left(\beta_{L}-\beta_{R}\right)$ for signif. $\beta_{L} \&$ signif. β_{R}

OfferLev lookL

OfferLev lookR

49/248**
39/248**

Offer2
Signif. \& n.s. β_{R}

What if we used more bins for Look L vs Look R? i.e. $t \mathrm{R} /(\mathrm{tR}+\mathrm{tL})$ binned as $[0,0.25,0.5,1$]

What if we used more bins for Look L vs Look R? i.e. $t \mathrm{R} /(\mathrm{tR}+\mathrm{tL})$ binned as $[0,1 / 6,2 / 6,3 / 6,4 / 6$, 5/6, 1]

GLM for spike count η :
$\eta \approx \exp \left(\beta_{0}+\beta_{1} \cdot\left(\boldsymbol{R}_{\boldsymbol{E} V}\right)\right)$

