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/I\/Iotivation ) /I\/Iain Result: Mmor, MPOW & FEP compared \

Natural behavior, even stereotyped one, is variable. The reasons for this MOP produces action-state entropy non-stop, while MPOW favors unstable fix
variability are unknown. We propose that the goal of behavior is to produce points and FEP collapses to deterministic behaviors in fully observable MDPs.
guided variability, i.e., generate all sorts of action-state paths compatible with This 1s observed in two very common environments, a grid-world and a cartpole:
the dynamics and constraints of the agent. We call this Maximum Occupancy use QRs for compelling examples
Principle (MOP). We compare MOP with other two reward-free approaches in

MOP a-step MPOW = 200, A = 0.1 EFE = 200, A — 0.0 EFE
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Maximum Occupancy Principle (MOP) o
Goal: Maximize future cumulative action-state path entropy [1] :

- s - - (=5[] MOP occupies space  the center of a room is the most  with a tiny preference for a food source,
Blas: Agents prefer states that promise future action-state entropy (freedom & i empowered state for MPOW FEP collapses to a deterministic policy
exploration) while avoiding absorbing states (survival instinct)

Recursive?: Yes, a Bellman equation can be written 3-step MPOW H-200 EFE  probabiy
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MOP vs Reward Maximization

MOP generates complex behavior in both a grid-world and ant environment.
!*}’ ‘%H“I* In contrast, epsilon-greedy reward maximization matching survival times leads to
less variable behaviors
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MOP capable of stochastic and

I PN R agents linger over the food RWsdie very fast deterministic behaviors (E-depent.)
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Empowerment (MPOW) / ow Zu)
Goal: Maximize mutual information between a sequence of actions and the 0.01 i“'
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Bias: Agents prefer empowered states, I.e., unstable fixed points of the dynamics
Recursive?. No, a Bellman equation cannot be written, because Mutual Info is MOP avoids a “noisy TV room” if gamma is large enough

not additive [1], but approximations exist [1,3]
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In a high-dimensional control problem (ant, MuJoCo), MOP explores more than epsilon-greedy R agents
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state empowerment; transitions are greedy towards the accessible state with highest empowerment
MOP before food MOP after first food  energy .
i -350 1.24 = :ft(e)ll(
Free Energy Principle (FEP / EFE & F I
ree Energy Principle e Ul
- = - - - - - g ‘)\: 100 047 : N
Goal: Minimize KL divergence between actual and target distributions [4] | -
Bias: Agents prefer states where target distribution peaks (preferred states), and . o " ety vy
behavior tends to collapse to a deterministic policy around them \ MOP develops both stochastic and deterministic state-dependent policies /
Recursive?: Yes in fully observable MDPS (‘sophisticated inference”)
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