
Introduction
Neural cells in frontal brain areas have been widely shown to be involved in high level 
cognitive control functions. Crucial to the understanding of their function is the 
investigation of how the neural spiking relates to the processing of sensory features of 
external stimuli bound in abstract entities of goal-directed relevance. This is often 
achieved through working memory mechanisms, largely supposed to be functional to 
the integration of cognitive variables for the selection and achievement of alternative 
goals, as it is the case for decision making. For decision making tasks with reward 
gambling and sequential reward offer cues presentation, neurons in the orbito-frontal 
cortex (OFC) have been associated with the coding and maintenance of the estimated 
value of a firstly presented offer expected value (EV) so that it could be compared with 
the estimated value of a later presented one [1-4]. Importantly, it is yet to be assessed what 
is the role of sensory offer cues and their features, such as the spatial location and 
temporal order of offer cues presentation in neural firing. Our research aim is to 
combine the analyses of the role of task variables such as gambling probability and 
reward sizes with eye movement behavior and neural spiking activity simultaneously 
recorded in OFC during the execution of a two-alternative gambling task with 
sequential visual offer cues presentation.

Our work first focused on the role of eye position during decision making tasks, 
revealing how successful behavioral choices coincided with the subject's ability to 
direct their gaze to the screen side with best offer expected value during task 
execution. This result motivated us to analyse eye position as a marker of a readout 
mechanism possibly allowing to aim for the actual best guess. Interestingly, this 
result becomes more evident and robust after the second offer presentation. We 
argue this to be a central result as once both offers were presented, the subjects 
most frequently reached the side of best offer, despite they were left with blank 
screen and free to move at their will. This crucial result is consistently reported 
both when considering the fraction of time spent looking at best offer and when 
considering how looking at either side impacts the choice. Among our results, we 
show how the subjects systematically moved their gaze following a robust task 
execution pattern, providing further insight in how eye movements play a crucial 
role in the decision process. Lastly, we applied Generalized Linear Models to 
identify cells whose firing rate showed significant linear relationship with offers 
features and behavioral task variables. In particular, a significant portion of cells 
showed selectivity to the EV of offers, to the order of offer presentation, and to 
immediate previous trial rewards. Interestingly, combining eye and neural data 
analyses, we also reported that the firing rate of a large proportion of the OFC 
cells recorded was tightly linked with the fraction time spent on either screen side. 

Figure 1. Behavioral Task and recorded brain areas. A) Timeline of the two-alternative gambling task for a 
sample configuration. Reward offers were sequentially cued by visual presentation of vertical bar stimuli on 
the two opposite sides of the screen. Stimuli colors could either cue to a safe, small fluid reward (gray) or to 
risky rewards with size medium (blue) or large (green). Risky reward magnitudes were pseudo-randomized 
across trials. Risky reward probabilities were continuous random variables drawn from uniform probability 
distributions. The height of bars indicated the probability of achieving rewards with given size. Miss 
probability was indicated by complementing risky offer bars with red color bars of height matching the 
probability of no reward. B) Recorded areas coved Brodmann Areas 11 (BA11) and 13 (BA13), shown in the 
above anatomical sketch redrawn from Mansouri et al., 2014[5]. Two adult male rhesus macaques (Macaca 
mulatta) served as subjects. All procedures were approved by the University Committee on Animal 
Resources at the University of Rochester or at the University of Minnesota, designed and conducted by T.C.-
P., M.W.Z. and B.H. in compliance with the Public Health Service's Guide for the Care and Use of the Animals.
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i=0
kf -1

assessing linearity 
of the relationship 
between the spike 
count of neuron j  
and the regressor 
i, with slope wi, in 
any of the task 
time windows.
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f is the link fuction, specifying the link between
analytic regressors and the recorded data. In the 
cause of Poisson distributed data, the function 
used for linearization is the logarithm. 
wi, i=0,...,k is the weight of k task variables  used as 
regressors in the GLM for neural spike counts.
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Figure 2. Saccade detection rule and Generalized linear model of OFC neural activity. A) Graphical scheme 
of the saccade detection rule applied in the analysis of eye data. Eye position drifts were detected as 
saccades when the drift was monotonic and when it persisted for at least 25 ms. Different duration values 
did not affect qualitative results. B) Graphical scheme of the computational tool used to assess the 
relationship between spike count and analytic regressors such as offer features or behavioral task variables.
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Figure 3. Behavioral data analyses. A) Behavioral execution performances: chosen offer vs EV difference.
B) Two-dimensional distribution of eye position during task execution. Results were smoothed with 
Gaussian filter with sigma = 5 visual angle bins. C) Fraction of time  looking at Right screen side vs EV 
difference (EV resolution used is 0.05 nominal units: 1=small, 2=medium, 3=large reward). Solid lines: 
sigmoid functions fits; shaded areas: 95% Confidence Interval (CI). D) Chosen offer vs difference in time 
spent at either screen side. Solid lines: logistic regression fits (logit(fraction of choices = Right) = β0 + (time on 
the Right side - time on the Left side) β1; * p<0.05, ** p<0.01, *** p<0.001); E) Screen midline crossing 
saccades labelled by direction. Solid lines: second order polynomial fit; shaded areas: 95% CI. F) Time 
histograms of saccades occurrence labelled by direction. Panels show results for midline-crossing 
saccades only and including saccades within-hemifields. A-F) Data include 5971 trials correctly performed 
(2643 from subject 1, 3328 from subject 2). Pooling is made with reference to the first offer side: eye data in 
trials with Left offer first are combined with horizontally mirrored eye data in trials with Right offer first. 

Figure 4. Neural data analyses. A) Results of the GLM of neural spike counts. Data include activity from 248 
cells (163 from subject 1; 85 from subject 2). Grey dots: weight of regressors for each cell and in each time 
window. Colored dots: weights for cells with significant regression p-values (p<0.05). To improve 
visualization, weights for time Left and time R are x100 in task windows following offer 2. Text reports the 
portion of significant cells and their average weight. Significance of fraction of cells is assessed via binomial 
tests with threshold 0.05 (* p<0.05, ** p<0.01, *** p<0.001).
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